Communication Styles of Human-Machine Interaction in the ChatGPT
Abstract
This research aims to analyze the communication style of Human-machine interaction based on ChatGPT 3.5 to understand the pros and cons, as well as potential improvements in the implementation of this technology. Humans have limitations in processing complex information. The emergence of machines helps humans complete work, and many machine features provide solutions. This research found out human-machine interaction, focuses on communication and using cooperative principles that have four maxims: maxim quantity, maxim quality, maxim relation, and maxim manner are some of the divisions that will be sought in human-machine interaction. The research uses a qualitative method by using a chatbot as a GPT version 3.5 chat that is then given a command. Then, the data is collected and analyzed. From this analysis, human-machine interaction qualitatively has good performance but has a deficiency in maximum quantity due to too much information given. The outcome of the violation of the maxim quantity that stands out requires self-interpretation where the statements correspond to the question. This research is expected to help develop human-machine interaction technology primarily in business.
References
Balkus, S. V., & Yan, D. (2023). Improving short text classification with augmented data using GPT-3. Natural Language Engineering, November 2020, 1–30. https://doi.org/10.1017/S1351324923000438
Božić, V., & Poola, I. (2023). Chat GPT and education. https://doi.org/10.13140/RG.2.2.18837.40168
Brin, D., Sorin, V., Vaid, A., Soroush, A., Glicksberg, B. S., Charney, A. W., Nadkarni, G., & Klang, E. (2023). Comparing ChatGPT and GPT-4 performance in USMLE soft skill assessments. Scientific Reports, 13(1), 1–6. https://doi.org/10.1038/s41598-023-43436-9
Butler, D. M., Kousser, T., & Oklobdzija, S. (2023). Do Male and Female Legislators Have Different Twitter Communication Styles? State Politics and Policy Quarterly, 23(2), 117–139. https://doi.org/10.1017/spq.2022.16
CHEN Xiao. (2020). An Aspectual Analysis of Grice’s Maxim of Relation: Compared With the Principle of Relevance. Philosophy Study, 10(2), 159–165. https://doi.org/10.17265/2159-5313/2020.02.007
Church, K. (2024). Emerging trends: When can users trust GPT, and when should they intervene? Natural Language Engineering, 1–11. https://doi.org/10.1017/S1351324923000578
Cornips, L., Koppen, M. Van, Leufkens, S., & Melum, K. (2023). A linguistic-pragmatic analysis of cat-induced deixis in cat- human interactions. Journal of Pragmatics, 217, 52–68. https://doi.org/10.1016/j.pragma.2023.09.002
Creswell, J. W. (2015). Penelitian Kualitatif & Desain Riset (3rd ed.). Pustaka Pelajar.
Dale, R. (2021). GPT-3: What’s it good for? Natural Language Engineering, 27(1), 113–118. https://doi.org/10.1017/S1351324920000601
Diskominfo. (2023). Apa Itu ChatGPT? Diskominfo. https://diskominfo.kedirikab.go.id/baca/apa-itu-chat-gpt
Duncan, D. (2022). Translation.
Fleming, M., & Hospital, M. G. (2023). Comparison of Human - Head Replacement with CHATGPT. May.
Grice, P. (1991). Studies In The Way Of Words. Harvard University Press.
Hartini, L., Saifullah, A. R., & Sudana, D. (2020). Linguistik Forensik terhadap Perbuatan Tidak Menyenangkan di Media Sosial (Kajian Pragmatik). Deiksis, 12(03), 259. https://doi.org/10.30998/deiksis.v12i03.5416
Hossain, M. M. (2021). Journal of English Language Teaching and Applied Linguistics The Application of Grice Maxims in Conversation: A Pragmatic Study. c, 32–40. https://doi.org/10.32996/jeltal
Jacquet, B., Hullin, A., Baratgin, J., & Jamet, F. (2019). The Impact of the Gricean Maxims of Quality, Quantity and Manner in Chatbots. Proceedings of the International Conference on Information and Digital Technologies 2019, IDT 2019, 180–189. https://doi.org/10.1109/DT.2019.8813473
Katar, O., Özkan, D., -3, G., Yildirim, Ö., & Acharya, U. R. (2023). Evaluation of GPT-3 AI Language Model in Research Paper Writing. Turkish Journal of Science and Technology, 18(2), 311–318. https://doi.org/10.55525/tjst.1272369
Khotimah, S. K. S. H. (2021). Pemanfaatan Media Pembelajaran, Inovasi di Masa Pandemi Covid-19. Edukatif : Jurnal Ilmu Pendidikan, 3(4), 2149–2158. https://doi.org/10.31004/EDUKATIF.V3I4.857
Levchenko, A., & Schmalian, J. (2020). rna lP pro of Jou. Annals of Physics, 168218. https://doi.org/10.1016/j.phycom.2023.102206
Lukanova, G., & Ilieva, G. (2019). Robots, artifiial intelligence, and service automation in hotels. In Robots, Artificial Intelligence and Service Automation in Travel, Tourism and Hospitality (Issue November). https://doi.org/10.1108/978-1-78756-687-320191009
Made, N., Viryani, J., Gusti, I., Widiadnya, V., & Made, I. (2023). An Analysis of Flouting Maxim in Her Movie By Spike Jonze. 04(02), 92–101.
Mahmud, S., Lin, X., & Kim, J. H. (2020). Interface for Human Machine Interaction for assistant devices: A Review. 2020 10th Annual Computing and Communication Workshop and Conference, CCWC 2020, 768–773. https://doi.org/10.1109/CCWC47524.2020.9031244
Mayasari, A., Pujasari, W., Ulfah, U., & Arifudin, O. (2021). Pengaruh Media Visual Pada Materi Pembelajaran Terhadap Motivasi Belajar Peserta Didik. Jurnal Tahsinia, 2(2), 173–179. https://doi.org/10.57171/jt.v2i2.303
Montecchi, T., & Becattini, N. (2021). A modelling framework for data-driven design for sustainable behaviour in human-machine interactions. Proceedings of the Design Society, 1, 151–160. https://doi.org/10.1017/pds.2021.16
Mubarok, I. (2021). Analisis Percakapan Terhadap Tindak Tutur Dalam Sebuah Pembelajaran Bahasa Arab Di Pondok Modern Madinah (Pendekatan Maksim Kerjasama Model Grice). Insyirah: Jurnal Ilmu Bahasa Arab Dan Studi Islam, 4(1), 11–28. https://doi.org/10.26555/insyirah.v4i1.3507
Ngozi, C., & Americanah, A. S. (2022). TANDA: Jurnal Kajian Budaya, Bahasa dan Sastra , Volume 02 No. 02 Tahun (2022). 02(02), 60–61.
Park, J.-A., & Kim, H.-J. (2024). Strategic Formation of CEO Apologies: Emulating Post-Crisis Public Statements Through GPT-4. Customer Needs and Solutions, 11(1), 1–18. https://doi.org/10.1007/s40547-023-00141-y
Rahimzadeh, V., Kostick-Quenet, K., Blumenthal Barby, J., & McGuire, A. L. (2023). Ethics Education for Healthcare Professionals in the Era of ChatGPT and Other Large Language Models: Do We Still Need It? American Journal of Bioethics, 23(10), 17–27. https://doi.org/10.1080/15265161.2023.2233358
Ramadhan, F. K., Faris, M. I., Wahyudi, I., & Sulaeman, M. K. (2023). Pemanfaatan ChatGPT Dalam Dunia Pendidikan. Jurnal Ilmiah Flash, 9(1), 25. https://doi.org/10.32511/flash.v9i1.1069
Riyanto, G. P. (2023). Pertama Kalinya, Jumlah Pengguna ChatGPT Turun. Kompas.Com. https://tekno.kompas.com/read/2023/07/12/07000007/pertama-kalinya-jumlah-pengguna-chatgpt-turun
Scarantino, A. (2017). How to Do Things with Emotional Expressions: The Theory of Affective Pragmatics. Psychological Inquiry, 28(2–3), 165–185. https://doi.org/10.1080/1047840X.2017.1328951
Schamberger, C., & Bülow, L. (2022). Grice and Kant on Maxims and Categories. Philosophia (United States), 50(2), 703–717. https://doi.org/10.1007/s11406-021-00398-4
Shidiq, M., Jadid, N., & Java, E. (2023). The use of artificial intelligence-based Chat- GPT and its challenges for the world of education ; from the viewpoint of the development of creative writing skills. 01(01), 360–364.
Sidabutar, K. E. (2022). Grice’s Types of Maxims in “Willoughbhys” Movie. IDEAS: Journal on English Language Teaching and Learning, Linguistics and Literature, 10(1), 326–337. https://doi.org/10.24256/ideas.v10i1.2661
Simons, M. (2017). Local pragmatics in a Gricean framework. Inquiry (United Kingdom), 60(5), 466–492. https://doi.org/10.1080/0020174X.2016.1246865
Tewari, M., Bensch, S., Hellström, T., & Richter, K.-F. (2020). Modelling Grice's Maxim of Quantity as Informativeness for Short Text. 1–7. https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-176269
Tufarelli, M., & Cianfanelli, E. (2022). Generative Product Design Processes: Humans and Machines Towards a Symbiotic Balance. Proceedings of the Design Society, 2, 1787–1794. https://doi.org/10.1017/pds.2022.181
van Rooij, R., & de Jager, T. (2012). Explaining Quantity Implicatures. Journal of Logic, Language and Information, 21(4), 461–477. https://doi.org/10.1007/S10849-012-9163-3/METRICS
Wahid, R., & Hikamudin, E. (2023). Analisis Penggunaan Chat-GPT Oleh Mahasiswa Terhadap Proses Pendidikan di Perguruan Tinggi. Jurnal Pedagogik Indonesia, 1(2), 112–117. https://journal.ksatriacendekiaindonesia.id/index.php/jpi/article/view/29
Waisberg, E., Ong, J., Masalkhi, M., Zaman, N., Kamran, S. A., Sarker, P., Lee, A. G., & Tavakkoli, A. (2023). Generative Pre-Trained Transformers (GPT) and Space Health: A Potential Frontier in Astronaut Health During Exploration Missions. Prehospital and Disaster Medicine, 38(4), 532–536. https://doi.org/10.1017/S1049023X23005848
Yamazaki, H. (2024). Searching the Possibilities of ChatGPT - Can ChatGPT truly become a capable assistant to a paper technology specialist ? -. January.
Yin, R., Wang, D., Zhao, S., Lou, Z., & Shen, G. (2021). Wearable Sensors-Enabled Human–Machine Interaction Systems: From Design to Application. Advanced Functional Materials, 31(11), 1–24. https://doi.org/10.1002/adfm.202008936
Youvan, D. C. (2024). Through the Eyes of GPT-4: Insights and Reflections on the Journey of AI Development. January. https://doi.org/10.13140/RG.2.2.35212.49280
Yudono, K. D. A. (2023). Keterbatasan Cerita Pendek Horor Karya Artificial Intelligence (AI) pada Perangkat Lunak ChatGPT. DIDAKTIS: Jurnal Pendidikan Bahasa Dan Sastra Indonesia, 1(2), 51–56. https://doi.org/10.33096/didaktis.v1i2.306
Zhang, B., Tang, Y., Dai, R., Wang, H., Sun, X., Qin, C., Pan, Z., Liang, E., & Mao, Y. (2019). Breath-based human–machine interaction system using triboelectric nanogenerator. Nano Energy, 64, 103953. https://doi.org/10.1016/j.nanoen.2019.103953
Copyright (c) 2024 Indonesian Journal of EFL and Linguistics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.